`
javasogo
  • 浏览: 1773559 次
  • 性别: Icon_minigender_1
  • 来自: 北京
文章分类
社区版块
存档分类
最新评论

opencv 检测直线、圆、矩形

阅读更多

检测直线:cvHoughLinescvHoughLines2

检测圆:cvHoughCircles

检测矩形:opencv中没有对应的函数,下面有段代码可以检测矩形,是通过先找直线,然后找到直线平行与垂直的四根线。

检测直线代码:

/* This is a standalone program. Pass an image name as a first parameter of the program.

Switch between standard and probabilistic Hough transform by changing "#if 1" to "#if 0" and back */

#include <cv.h>

#include <highgui.h>

#include <math.h>

int main(int argc, char** argv)

{

const char* filename = argc >= 2 ? argv[1] : "pic1.png";

IplImage* src = cvLoadImage( filename, 0 );

IplImage* dst;

IplImage* color_dst;

CvMemStorage* storage = cvCreateMemStorage(0);

CvSeq* lines = 0;

int i;

if( !src )

return -1;

dst = cvCreateImage( cvGetSize(src), 8, 1 );

color_dst = cvCreateImage( cvGetSize(src), 8, 3 );

cvCanny( src, dst, 50, 200, 3 );

cvCvtColor( dst, color_dst, CV_GRAY2BGR );

#if 0

lines = cvHoughLines2( dst, storage, CV_HOUGH_STANDARD, 1, CV_PI/180, 100, 0, 0 );

for( i = 0; i < MIN(lines->total,100); i++ )

{

float* line = (float*)cvGetSeqElem(lines,i);

float rho = line[0];

float theta = line[1];

CvPoint pt1, pt2;

double a = cos(theta), b = sin(theta);

double x0 = a*rho, y0 = b*rho;

pt1.x = cvRound(x0 + 1000*(-b));

pt1.y = cvRound(y0 + 1000*(a));

pt2.x = cvRound(x0 - 1000*(-b));

pt2.y = cvRound(y0 - 1000*(a));

cvLine( color_dst, pt1, pt2, CV_RGB(255,0,0), 3, CV_AA, 0 );

}

#else

lines = cvHoughLines2( dst, storage, CV_HOUGH_PROBABILISTIC, 1, CV_PI/180, 50, 50, 10 );

for( i = 0; i < lines->total; i++ )

{

CvPoint* line = (CvPoint*)cvGetSeqElem(lines,i);

cvLine( color_dst, line[0], line[1], CV_RGB(255,0,0), 3, CV_AA, 0 );

}

#endif

cvNamedWindow( "Source", 1 );

cvShowImage( "Source", src );

cvNamedWindow( "Hough", 1 );

cvShowImage( "Hough", color_dst );

cvWaitKey(0);

return 0;

}

检测圆代码:

#include <cv.h>

#include <highgui.h>

#include <math.h>

int main(int argc, char** argv)

{

IplImage* img;

if( argc == 2 && (img=cvLoadImage(argv[1], 1))!= 0)

{

IplImage* gray = cvCreateImage( cvGetSize(img), 8, 1 );

CvMemStorage* storage = cvCreateMemStorage(0);

cvCvtColor( img, gray, CV_BGR2GRAY );

cvSmooth( gray, gray, CV_GAUSSIAN, 9, 9 ); // smooth it, otherwise a lot of false circles may be detected

CvSeq* circles = cvHoughCircles( gray, storage, CV_HOUGH_GRADIENT, 2, gray->height/4, 200, 100 );

int i;

for( i = 0; i < circles->total; i++ )

{

float* p = (float*)cvGetSeqElem( circles, i );

cvCircle( img, cvPoint(cvRound(p[0]),cvRound(p[1])), 3, CV_RGB(0,255,0), -1, 8, 0 );

cvCircle( img, cvPoint(cvRound(p[0]),cvRound(p[1])), cvRound(p[2]), CV_RGB(255,0,0), 3, 8, 0 );

}

cvNamedWindow( "circles", 1 );

cvShowImage( "circles", img );

}

return 0;

}

检测矩形代码:

/*
在程序里找寻矩形
*/
#ifdef _CH_
#pragma package <opencv>
#endif
#ifndef _EiC
#include "cv.h"
#include "highgui.h"
#include <stdio.h>
#include <math.h>
#include <string.h>
#endif
int thresh = 50;
IplImage* img = 0;
IplImage* img0 = 0;
CvMemStorage* storage = 0;
CvPoint pt[4];
const char* wndname = "Square Detection Demo";
// helper function:
// finds a cosine of angle between vectors
// from pt0->pt1 and from pt0->pt2 
double angle( CvPoint* pt1, CvPoint* pt2, CvPoint* pt0 )
{
 double dx1 = pt1->x - pt0->x;
 double dy1 = pt1->y - pt0->y;
 double dx2 = pt2->x - pt0->x;
 double dy2 = pt2->y - pt0->y;
 return (dx1*dx2 + dy1*dy2)/sqrt((dx1*dx1 + dy1*dy1)*(dx2*dx2 + dy2*dy2) + 1e-10);
}
// returns sequence of squares detected on the image.
// the sequence is stored in the specified memory storage
CvSeq* findSquares4( IplImage* img, CvMemStorage* storage )
{
 CvSeq* contours;
 int i, c, l, N = 11;
 CvSize sz = cvSize( img->width & -2, img->height & -2 );
 IplImage* timg = cvCloneImage( img ); // make a copy of input image
 IplImage* gray = cvCreateImage( sz, 8, 1 ); 
IplImage* pyr = cvCreateImage( cvSize(sz.width/2, sz.height/2), 8, 3 );
 IplImage* tgray;
 CvSeq* result;
 double s, t;
 // create empty sequence that will contain points -
 // 4 points per square (the square's vertices)
 CvSeq* squares = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvPoint), storage );
 
// select the maximum ROI in the image
 // with the width and height divisible by 2
 cvSetImageROI( timg, cvRect( 0, 0, sz.width, sz.height ));
 
// down-scale and upscale the image to filter out the noise
 cvPyrDown( timg, pyr, 7 );
 cvPyrUp( pyr, timg, 7 );
 tgray = cvCreateImage( sz, 8, 1 );
 
// find squares in every color plane of the image
 for( c = 0; c < 3; c++ )
 {
 // extract the c-th color plane
 cvSetImageCOI( timg, c+1 );
 cvCopy( timg, tgray, 0 );
 
// try several threshold levels
 for( l = 0; l < N; l++ )
 {
 // hack: use Canny instead of zero threshold level.
 // Canny helps to catch squares with gradient shading 
if( l == 0 )
 {
 // apply Canny. Take the upper threshold from slider
 // and set the lower to 0 (which forces edges merging) 
cvCanny( tgray, gray, 0, thresh, 5 );
 // dilate canny output to remove potential
 // holes between edge segments 
cvDilate( gray, gray, 0, 1 );
 }
 else
 {
 // apply threshold if l!=0:
 // tgray(x,y) = gray(x,y) < (l+1)*255/N ? 255 : 0
 cvThreshold( tgray, gray, (l+1)*255/N, 255, CV_THRESH_BINARY );
 }
 
// find contours and store them all as a list
 cvFindContours( gray, storage, &contours, sizeof(CvContour),
 CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE, cvPoint(0,0) );
 
// test each contour
 while( contours )
 {
 // approximate contour with accuracy proportional
 // to the contour perimeter
 result = cvApproxPoly( contours, sizeof(CvContour), storage,
 CV_POLY_APPROX_DP, cvContourPerimeter(contours)*0.02, 0 );
 // square contours should have 4 vertices after approximation
 // relatively large area (to filter out noisy contours)
 // and be convex.
 // Note: absolute value of an area is used because
 // area may be positive or negative - in accordance with the
 // contour orientation
 if( result->total == 4 &&
 fabs(cvContourArea(result,CV_WHOLE_SEQ)) > 1000 &&
 cvCheckContourConvexity(result) )
 {
 s = 0;
 
for( i = 0; i < 5; i++ )
 {
 // find minimum angle between joint
 // edges (maximum of cosine)
 if( i >= 2 )
 {
 t = fabs(angle(
 (CvPoint*)cvGetSeqElem( result, i ),
 (CvPoint*)cvGetSeqElem( result, i-2 ),
 (CvPoint*)cvGetSeqElem( result, i-1 )));
 s = s > t ? s : t;
 }
 }
 
// if cosines of all angles are small
 // (all angles are ~90 degree) then write quandrange
 // vertices to resultant sequence 
if( s < 0.3 )
 for( i = 0; i < 4; i++ )
 cvSeqPush( squares,
 (CvPoint*)cvGetSeqElem( result, i ));
 }
 
// take the next contour
 contours = contours->h_next;
 }
 }
 }
 
// release all the temporary images
 cvReleaseImage( &gray );
 cvReleaseImage( &pyr );
 cvReleaseImage( &tgray );
 cvReleaseImage( &timg );
 
return squares;
}
// the function draws all the squares in the image
void drawSquares( IplImage* img, CvSeq* squares )
{
 CvSeqReader reader;
 IplImage* cpy = cvCloneImage( img );
 int i;
 
// initialize reader of the sequence
 cvStartReadSeq( squares, &reader, 0 );
 
// read 4 sequence elements at a time (all vertices of a square)
 for( i = 0; i < squares->total; i += 4 )
 {
 CvPoint* rect = pt;
 int count = 4;
 
// read 4 vertices
 memcpy( pt, reader.ptr, squares->elem_size );
 CV_NEXT_SEQ_ELEM( squares->elem_size, reader );
 memcpy( pt + 1, reader.ptr, squares->elem_size );
 CV_NEXT_SEQ_ELEM( squares->elem_size, reader );
 memcpy( pt + 2, reader.ptr, squares->elem_size );
 CV_NEXT_SEQ_ELEM( squares->elem_size, reader );
 memcpy( pt + 3, reader.ptr, squares->elem_size );
 CV_NEXT_SEQ_ELEM( squares->elem_size, reader );
 
// draw the square as a closed polyline 
cvPolyLine( cpy, &rect, &count, 1, 1, CV_RGB(0,255,0), 3, CV_AA, 0 );
 }
 
// show the resultant image
 cvShowImage( wndname, cpy );
 cvReleaseImage( &cpy );
}
void on_trackbar( int a )
{
 if( img )
 drawSquares( img, findSquares4( img, storage ) );
}
char* names[] = { "pic1.png", "pic2.png", "pic3.png",
 "pic4.png", "pic5.png", "pic6.png", 0 };
int main(int argc, char** argv)
{
 int i, c;
 // create memory storage that will contain all the dynamic data
 storage = cvCreateMemStorage(0);
 for( i = 0; names[i] != 0; i++ )
 {
 // load i-th image
 img0 = cvLoadImage( names[i], 1 );
 if( !img0 )
 {
 printf("Couldn't load %s\n", names[i] );
 continue;
 }
 img = cvCloneImage( img0 );
 
// create window and a trackbar (slider) with parent "image" and set callback
 // (the slider regulates upper threshold, passed to Canny edge detector) 
cvNamedWindow( wndname, 1 );
 cvCreateTrackbar( "canny thresh", wndname, &thresh, 1000, on_trackbar );
 
// force the image processing
 on_trackbar(0);
 // wait for key.
 // Also the function cvWaitKey takes care of event processing
 c = cvWaitKey(0);
 // release both images
 cvReleaseImage( &img );
 cvReleaseImage( &img0 );
 // clear memory storage - reset free space position
 cvClearMemStorage( storage );
 if( c == 27 )
 break;
 }
 
cvDestroyWindow( wndname );
 
return 0;
}
#ifdef _EiC
main(1,"squares.c");
#endif

分享到:
评论

相关推荐

    opencv_检测直线、线段、圆、矩形

    opencv_检测直线、线段、圆、矩形 opencv_检测直线、线段、圆、矩形

    opencv_检测直线、线段、圆、矩形.rar

    opencv_检测直线、线段、圆、矩形 经典的HOugh变换

    检测直线,圆形,矩形

    检测直线:cvHoughLines,cvHoughLines2 检测圆:cvHoughCircles 检测矩形:opencv中没有对应的函数,下面有段代码可以检测矩形,是通过先找直线,然后找到直线平行与垂直的四根线。

    qt实现visionpro矩形直线圆形卡尺控件

    通过重写QGraphicsItem实现visionpro中的矩形、直线、圆形卡尺控件。 矩形卡尺可以拖动、缩放、旋转、斜切 直线卡尺可任意拖动拉伸直线、设置矩形个数、...圆形卡尺可任意拖动拉伸圆弧、补全圆、设置矩形个数、缩放矩形

    Opencv实现最小外接矩形和圆

    本文实例为大家分享了Opencv实现最小外接矩形和圆的具体代码,供大家参考,具体内容如下 步骤:将一幅图像先转灰度,再canny边缘检测得到二值化边缘图像,再寻找轮廓,轮廓是由一系列点构成的,要想获得轮廓的最小...

    基于OpenCV实现卡尺工具.rar

    基于OpenCV实现仿halcon卡尺工具源码

    python3.x Opencv Toturial

    11.1使用 OpenCV 检测程序效率 11.2OpenCV 中的默认优化 11.3在 IPython 中检测程序效率 11.4更多 IPython 的魔法命令 11.5效率优化技术 12OpenCV 中的数学工具 IV OpenCV 中的图像处理 13颜色空间转换 54 13.1...

    opencv的全部基础操作,一共109个实例全部都在anaconda3,python3.7,opencv4调试通过。

    code_060 | [概率霍夫曼直线检测](python/code_060/opencv_060.py) | ❣️ code_061 | [霍夫曼圆检测](python/code_061/opencv_061.py) | ❣️ code_062 | [膨胀和腐蚀](python/code_062/opencv_062.py) | ❣️ code...

    Learn-OpenCV-in-3-hours

    了解如何创建空白图像以及如何绘制直线,矩形,圆形和自定义文本。 5 了解如何使用固定点在图像的选定区域上创建变形。 6 将多张图像合并为一张图像,以便于可视化工作流。了解如何针对较小的图像数量执行此操作,...

    OpenCV-Python-Tutorials-and-Projects:适用于初学者的使用Python的OpenCV易学课程

    如何绘制形状和文字 立即观看了解如何创建空白图像以及如何绘制直线,矩形,圆形和自定义文本。 连接多个图像进行显示 立即观看将多张图像合并为一张图像,以便于可视化工作流。 了解如何针对较小的图像数量执行此...

    OpenCV Python开发 第一章 图像处理基础

    OpenCV中的卷积边缘与轮廓边缘检测与Canny算法熟悉轮廓检测边界框、最小矩形区域和最小闭圆轮廓图轮廓与Douglas-Peucker算法形状检测直线检测圆检测章节总结本章所有API本章完整代码 不同的色彩空间 色彩是人的眼睛...

    (三)OpenCV图像处理_01_切边

    通过边缘检测 + 轮廓发现或者直线检测最大外接矩形实现 方法二: 通过二值分割 + 形态学方法 + Hough直线 找到最大外接矩形 #include #include using namespace std; using namespace cv; Mat src, gray, dst; RNG ...

    Visual C++数字图像处理开发入门与编程实践2-8章源代码

    直线、矩形、椭圆的绘制。 2.可以更改绘制线条的类型、宽度、颜色。 &lt;br&gt;第三章ColorPicker是一个基于对话框的应用程序,它具有以下功能: 1. 色彩编辑功能 用户可以通过可以调整R、G、B的值来编辑颜色...

    Visual C++数字图像处理开发入门与编程实践第10章

    直线、矩形、椭圆的绘制。 2.可以更改绘制线条的类型、宽度、颜色。 &lt;br&gt;第三章ColorPicker是一个基于对话框的应用程序,它具有以下功能: 1. 色彩编辑功能 用户可以通过可以调整R、G、B的值来编辑颜色...

Global site tag (gtag.js) - Google Analytics